Algorithmic design of a noise-resistant and efficient closed-loop deep brain stimulation system: A computational approach

نویسندگان

  • Sofia D. Karamintziou
  • Ana Luísa Custódio
  • Brigitte Piallat
  • Mircea Polosan
  • Stéphan Chabardès
  • Pantelis G. Stathis
  • George A. Tagaris
  • Damianos E. Sakas
  • Georgia E. Polychronaki
  • George L. Tsirogiannis
  • Olivier David
  • Konstantina S. Nikita
چکیده

Advances in the field of closed-loop neuromodulation call for analysis and modeling approaches capable of confronting challenges related to the complex neuronal response to stimulation and the presence of strong internal and measurement noise in neural recordings. Here we elaborate on the algorithmic aspects of a noise-resistant closed-loop subthalamic nucleus deep brain stimulation system for advanced Parkinson's disease and treatment-refractory obsessive-compulsive disorder, ensuring remarkable performance in terms of both efficiency and selectivity of stimulation, as well as in terms of computational speed. First, we propose an efficient method drawn from dynamical systems theory, for the reliable assessment of significant nonlinear coupling between beta and high-frequency subthalamic neuronal activity, as a biomarker for feedback control. Further, we present a model-based strategy through which optimal parameters of stimulation for minimum energy desynchronizing control of neuronal activity are being identified. The strategy integrates stochastic modeling and derivative-free optimization of neural dynamics based on quadratic modeling. On the basis of numerical simulations, we demonstrate the potential of the presented modeling approach to identify, at a relatively low computational cost, stimulation settings potentially associated with a significantly higher degree of efficiency and selectivity compared with stimulation settings determined post-operatively. Our data reinforce the hypothesis that model-based control strategies are crucial for the design of novel stimulation protocols at the backstage of clinical applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Closed- and Open-loop Deep Brain Stimulation: Methods, Challenges, Current and Future Aspects

Deep brain stimulation (DBS) is known as the most effective technique in the treatment of neurodegenerative diseases, especially Parkinson disease (PD) and epilepsy. Relative healing and effective control of disease symptoms are the most significant reasons for the tangible tendency in use and development of this technology. Nevertheless, more cellular and molecular investigations are required ...

متن کامل

A New Approach in Preliminary Design of Closed Loop Solar Thermal Systems (RESEARCH NOTE)

In this paper, a model for closed loop solar system is presented and an attempt is made to generalize the model to be utilized for primary design of any solar active thermal system. This model may be used for systems in which gas or a liquid are fluids that flow. Two new parameters, namely, the system heat delivery factor and the system heat absorption factor are introduced in the model. These ...

متن کامل

Phasic Burst Stimulation: A Closed-Loop Approach to Tuning Deep Brain Stimulation Parameters for Parkinson’s Disease

We propose a novel, closed-loop approach to tuning deep brain stimulation (DBS) for Parkinson's disease (PD). The approach, termed Phasic Burst Stimulation (PhaBS), applies a burst of stimulus pulses over a range of phases predicted to disrupt pathological oscillations seen in PD. Stimulation parameters are optimized based on phase response curves (PRCs), which would be measured from each patie...

متن کامل

A-New-Closed-form-Mathematical-Approach-to-Achieve Minimum Phase Noise in Frequency Synthesizers

The aim of this paper is to minimize output phase noise for the pure signal synthesis in the frequency synthesizers. For this purpose, first, an exact mathematical model of phase locked loop (PLL) based frequency synthesizer is described and analyzed. Then, an exact closed-form formula in terms of synthesizer bandwidth and total output phase noise is extracted. Based on this formula, the phase ...

متن کامل

A joint pricing-network design model for a resilient closed-loop supply chain under quantity discount

In this paper, a novel resilient multi-echelon closed-loop location-allocation-inventory problem (RMCLIP) is addressed that optimizes strategic and tactical decisions simultaneously. In order to represent the purchasing cost of raw material from the supplier, a pricing model under quantity discounts is employed in the closed-loop supply chain (CLSC). Considering the capability of returning the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017